Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.

Identifieur interne : 000D89 ( Main/Exploration ); précédent : 000D88; suivant : 000D90

Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.

Auteurs : Alessia De Lillo [Italie] ; Manuela Cardi [Italie] ; Simone Landi [Italie] ; Sergio Esposito [Italie]

Source :

RBID : pubmed:30194387

Descripteurs français

English descriptors

Abstract

The regulation of recombinant plastidic glucose-6P dehydrogenase from Populus trichocarpa (PtP2-G6PDH - EC 1.1.1.49) was investigated by exposing wild type and mutagenized isoforms to heavy metals. Nickel and Cadmium caused a marked decrease in PtP2-G6PDH WT activity, suggesting their poisoning effect on plant enzymes; Lead (Pb++) was substantially ineffective. Copper (Cu++) and Zinc (Zn++) exposition resulted in strongest decrease in enzyme activity, thus suggesting a physiological competition with Magnesium, a well-known activator of G6PDH activity. Kinetic analyses confirmed a competitive inhibition by Copper, and a mixed inhibition by (Cd++). Mutagenized enzymes were differently affected by HMs: the reduction of disulfide (C175-C183) exposed the NADP+ binding sites to metals; C145 participates to NADP+ cofactor binding; C194 and C242 are proposed to play a role in the regulation of NADP+/NADPH binding. Copper (and possibly Zinc) is able to occupy competitively Magnesium (Mg++) sites and/or bind to NADP+, resulting in a reduced access of NADP+ sites on the enzyme. Hence, heavy metals could be used to describe specific roles of cysteine residues present in the primary protein sequence; these results are discussed to define the biochemical mechanism(s) of inhibition of plant plastidic G6PDH.

DOI: 10.1038/s41598-018-31348-y
PubMed: 30194387
PubMed Central: PMC6128849


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.</title>
<author>
<name sortKey="De Lillo, Alessia" sort="De Lillo, Alessia" uniqKey="De Lillo A" first="Alessia" last="De Lillo">Alessia De Lillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cardi, Manuela" sort="Cardi, Manuela" uniqKey="Cardi M" first="Manuela" last="Cardi">Manuela Cardi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landi, Simone" sort="Landi, Simone" uniqKey="Landi S" first="Simone" last="Landi">Simone Landi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Esposito, Sergio" sort="Esposito, Sergio" uniqKey="Esposito S" first="Sergio" last="Esposito">Sergio Esposito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy. sergio.esposito@unina.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30194387</idno>
<idno type="pmid">30194387</idno>
<idno type="doi">10.1038/s41598-018-31348-y</idno>
<idno type="pmc">PMC6128849</idno>
<idno type="wicri:Area/Main/Corpus">000C69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C69</idno>
<idno type="wicri:Area/Main/Curation">000C69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C69</idno>
<idno type="wicri:Area/Main/Exploration">000C69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.</title>
<author>
<name sortKey="De Lillo, Alessia" sort="De Lillo, Alessia" uniqKey="De Lillo A" first="Alessia" last="De Lillo">Alessia De Lillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cardi, Manuela" sort="Cardi, Manuela" uniqKey="Cardi M" first="Manuela" last="Cardi">Manuela Cardi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landi, Simone" sort="Landi, Simone" uniqKey="Landi S" first="Simone" last="Landi">Simone Landi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Esposito, Sergio" sort="Esposito, Sergio" uniqKey="Esposito S" first="Sergio" last="Esposito">Sergio Esposito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy. sergio.esposito@unina.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Biologia, Università di Napoli Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Chloroplast Proteins (chemistry)</term>
<term>Chloroplast Proteins (genetics)</term>
<term>Glucosephosphate Dehydrogenase (chemistry)</term>
<term>Glucosephosphate Dehydrogenase (genetics)</term>
<term>Kinetics (MeSH)</term>
<term>Metals, Heavy (chemistry)</term>
<term>NADP (chemistry)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Glucose 6-phosphate dehydrogenase (composition chimique)</term>
<term>Glucose 6-phosphate dehydrogenase (génétique)</term>
<term>Métaux lourds (composition chimique)</term>
<term>NADP (composition chimique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines chloroplastiques (composition chimique)</term>
<term>Protéines chloroplastiques (génétique)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chloroplast Proteins</term>
<term>Glucosephosphate Dehydrogenase</term>
<term>Metals, Heavy</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloroplast Proteins</term>
<term>Glucosephosphate Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucose 6-phosphate dehydrogenase</term>
<term>Métaux lourds</term>
<term>NADP</term>
<term>Protéines chloroplastiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glucose 6-phosphate dehydrogenase</term>
<term>Populus</term>
<term>Protéines chloroplastiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Kinetics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The regulation of recombinant plastidic glucose-6P dehydrogenase from Populus trichocarpa (PtP2-G6PDH - EC 1.1.1.49) was investigated by exposing wild type and mutagenized isoforms to heavy metals. Nickel and Cadmium caused a marked decrease in PtP2-G6PDH WT activity, suggesting their poisoning effect on plant enzymes; Lead (Pb
<sup>++</sup>
) was substantially ineffective. Copper (Cu
<sup>++</sup>
) and Zinc (Zn
<sup>++</sup>
) exposition resulted in strongest decrease in enzyme activity, thus suggesting a physiological competition with Magnesium, a well-known activator of G6PDH activity. Kinetic analyses confirmed a competitive inhibition by Copper, and a mixed inhibition by (Cd
<sup>++</sup>
). Mutagenized enzymes were differently affected by HMs: the reduction of disulfide (C
<sup>175</sup>
-C
<sup>183</sup>
) exposed the NADP
<sup>+</sup>
binding sites to metals; C
<sup>145</sup>
participates to NADP
<sup>+</sup>
cofactor binding; C
<sup>194</sup>
and C
<sup>242</sup>
are proposed to play a role in the regulation of NADP
<sup>+</sup>
/NADPH binding. Copper (and possibly Zinc) is able to occupy competitively Magnesium (Mg
<sup>++</sup>
) sites and/or bind to NADP
<sup>+</sup>
, resulting in a reduced access of NADP
<sup>+</sup>
sites on the enzyme. Hence, heavy metals could be used to describe specific roles of cysteine residues present in the primary protein sequence; these results are discussed to define the biochemical mechanism(s) of inhibition of plant plastidic G6PDH.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30194387</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.</ArticleTitle>
<Pagination>
<MedlinePgn>13481</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-31348-y</ELocationID>
<Abstract>
<AbstractText>The regulation of recombinant plastidic glucose-6P dehydrogenase from Populus trichocarpa (PtP2-G6PDH - EC 1.1.1.49) was investigated by exposing wild type and mutagenized isoforms to heavy metals. Nickel and Cadmium caused a marked decrease in PtP2-G6PDH WT activity, suggesting their poisoning effect on plant enzymes; Lead (Pb
<sup>++</sup>
) was substantially ineffective. Copper (Cu
<sup>++</sup>
) and Zinc (Zn
<sup>++</sup>
) exposition resulted in strongest decrease in enzyme activity, thus suggesting a physiological competition with Magnesium, a well-known activator of G6PDH activity. Kinetic analyses confirmed a competitive inhibition by Copper, and a mixed inhibition by (Cd
<sup>++</sup>
). Mutagenized enzymes were differently affected by HMs: the reduction of disulfide (C
<sup>175</sup>
-C
<sup>183</sup>
) exposed the NADP
<sup>+</sup>
binding sites to metals; C
<sup>145</sup>
participates to NADP
<sup>+</sup>
cofactor binding; C
<sup>194</sup>
and C
<sup>242</sup>
are proposed to play a role in the regulation of NADP
<sup>+</sup>
/NADPH binding. Copper (and possibly Zinc) is able to occupy competitively Magnesium (Mg
<sup>++</sup>
) sites and/or bind to NADP
<sup>+</sup>
, resulting in a reduced access of NADP
<sup>+</sup>
sites on the enzyme. Hence, heavy metals could be used to describe specific roles of cysteine residues present in the primary protein sequence; these results are discussed to define the biochemical mechanism(s) of inhibition of plant plastidic G6PDH.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Lillo</LastName>
<ForeName>Alessia</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0003-3983-8102</Identifier>
<AffiliationInfo>
<Affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardi</LastName>
<ForeName>Manuela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landi</LastName>
<ForeName>Simone</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Esposito</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-0899-1967</Identifier>
<AffiliationInfo>
<Affiliation>Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy. sergio.esposito@unina.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060365">Chloroplast Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.49</RegistryNumber>
<NameOfSubstance UI="D005954">Glucosephosphate Dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060365" MajorTopicYN="N">Chloroplast Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005954" MajorTopicYN="N">Glucosephosphate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30194387</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-31348-y</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-31348-y</ArticleId>
<ArticleId IdType="pmc">PMC6128849</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):4013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Nov;252:257-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Nov 18;4:7090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25404472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2016 May 11;5(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27187489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2015 Apr;114:93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25618632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jul;269(14):3417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Sep 3;583(17):2827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Feb;56(412):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 24;272(43):26985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9341136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 May;61(Pt 5):495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2008 Sep 29;89(4):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):627-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 Apr 10;245(7):1626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4392411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2001 Mar;33(3):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11311853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jun;40(3):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10437832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24782522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):8061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2005 Oct;20(5):485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16335057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Dec;73:266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24161756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Feb;216(4):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12569406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Dec 12;39(49):15002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2002 Mar;34(3):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11849992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2005 Feb;60(2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Sep;23(6):723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):826-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2004 Jun 29;326(1-3):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15142779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Aug;24(8):3380-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trace Elem Med Biol. 1995 Oct;9(3):144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8605602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1972 Apr;110(1):155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4401601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Jun;6(3):236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 20;283(25):17531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Aug;105:79-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27085599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Mar;107(3):725-735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Jan 1;457(1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24079807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Jan 8;114(1):538-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24040963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Jan;86:44-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(409):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2015 Aug;112:8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D380-D388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):611-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2017 Nov 10;261:194-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28438579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2013 Nov;182:209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933125</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="De Lillo, Alessia" sort="De Lillo, Alessia" uniqKey="De Lillo A" first="Alessia" last="De Lillo">Alessia De Lillo</name>
</noRegion>
<name sortKey="Cardi, Manuela" sort="Cardi, Manuela" uniqKey="Cardi M" first="Manuela" last="Cardi">Manuela Cardi</name>
<name sortKey="Esposito, Sergio" sort="Esposito, Sergio" uniqKey="Esposito S" first="Sergio" last="Esposito">Sergio Esposito</name>
<name sortKey="Landi, Simone" sort="Landi, Simone" uniqKey="Landi S" first="Simone" last="Landi">Simone Landi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30194387
   |texte=   Mechanism(s) of action of heavy metals to investigate the regulation of plastidic glucose-6-phosphate dehydrogenase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30194387" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020